POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Identification of Organic Compounds - Raw Materials for Pharmaceutical Production

Course

Field of study

Pharmaceutical Engineering

Area of study (specialization)

_

Level of study

First-cycle studies

Form of study

full-time

Year/Semester

2/4

Profile of study

general academic

Course offered in

Other (e.g. online)

polish

Requirements

elective

Number of hours

Lecture Laboratory classes

0 30

Tutorials Projects/seminars

0 0

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr inż. Monika Zielińska dr inż. Wojciech Smułek

Prerequisites

- 1. Basic knowledge of inorganic, organic, physical and analytical chemistry.
- 2. Experience in basic laboratory techniques in synthesis, isolation and purification chemical compounds.
- 3. Understanding the need for further training and increasing professional and personal competences.

Course objective

Understanding the need for further training and increasing professional and personal competences.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

K_W7

- 1. Student has knowledge of techniques and methods for the characterization and identification of chemicals, typical environmental pollution.
- 2. Student is able to describe the methods, techniques, tools and materials used in solving simple problems related to the identification of the substance with which it may encounter realizing pharmaceutical engineering tasks.

Skills

K_U8

- 1. Student uses spectroscopic methods for basic qualitative and quantitative determinations organic compounds.
- 2. Student is able to determine the suitability and choose tools (methods) to solve the problem with scope of pharmaceutical engineering.

Social competences

 K_K1

- 1. Student understands the need to improve professional qualifications.
- 2. Student is responsible for the tasks carried out in the team.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Knowledge control during laboratory classes. Raports from classes and results interpreting.

Programme content

The use of interactions between electromagnetic radiation and organic compound molecules and the possibility of use these phenomena to identify them. The scope of information provided allow for individual interpretation of spectra. Experimental technique is presented sufficiently to operate individually common equipment and contact with the operator of highly specialised equipment. Gaining the ability to perform the nalysis of specific organic compounds using spectroscopic methods (UV, IR, FTIR), including selection of method of sample preparation, individual operation of the equipment allowing to perform the analysis and interpret results.

Identification and characterization of raw materials for pharmaceutical production. The possibilities of sample preparation for spectroscopic analyzes are presented. Extending information on the selection of solvent and operating parameters of measuring equipment for spectral analysis in the area of visible light, ultraviolet and infrared.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Teaching methods

Practical laboratory classes, work with didactic materials, multimedia presentations.

Bibliography

Basic

- 1. Spektroskopowe metody identyfikacji związków organicznych, R.M. Silverstein,
 - F.X. Webster, D.J. Kremle, PWN, Warszawa, 2007
- 2. Metody spektroskopowe wyznaczania struktury związków organicznych, L.A. Kazicyna,
 - N.B. Kupletska, PWN, Warszawa, 1974
- 3. Określanie struktury związków organicznych metodami spektroskopowymi, M. Szafran,
 - Z. Dega-Szafran, PWN, Warszawa, 1988
- 4. Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych,
 - W. Zieliński, praca zbiorowa, WNT, Warszawa, 1995.
- 5. Spektroskopia mas związków organicznych, A. Płaziak, wyd. UAM, Poznań, 1997.

Additional

- 1. N.P.G. Roeges, A guide tot He complete interpretation of infrared spectra of organic structures, Wile, Chichester, 1994.
- 2. J.S. Splitter, F. Turecek, Application of mass spectrometry to organic stereochemistry, VCH, New York, 1994.

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,2
Student's own work (literature studies, preparation for	20	0,8
laboratory classes, preparation for tests) ¹		

-

¹ delete or add other activities as appropriate